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Mobile Human Airbag System for Fall Protection
Using MEMS Sensors and Embedded SVM Classifier

Guangyi Shi, Cheung Shing Chan, Wen Jung Li, Kwok-Sui Leung, Yuexian Zou, and Yufeng Jin

Abstract—This paper introduces a mobile human airbag system
designed for fall protection for the elderly. A Micro Inertial Mea-
surement Unit ( IMU) of 56 mm 23 mm 15 mm in size is built.
This unit consists of three dimensional MEMS accelerometers, gy-
roscopes, a Bluetooth module and a Micro Controller Unit (MCU).
It records human motion information, and, through the analysis of
falls using a high-speed camera, a lateral fall can be determined
by gyro threshold. A human motion database that includes falls
and other normal motions (walking, running, etc.) is set up. Using
a support vector machine (SVM) training process, we can clas-
sify falls and other normal motions successfully with a SVM filter.
Based on the SVM filter, an embedded digital signal processing
(DSP) system is developed for real-time fall detection. In addition,
a smart mechanical airbag deployment system is finalized. The
response time for the mechanical trigger is 0.133 s, which allows
enough time for compressed air to be released before a person falls
to the ground. The integrated system is tested and the feasibility of
the airbag system for real-time fall protection is demonstrated.

Index Terms—Digital signal processing (DSP), human motion
sensing, microelectromechanical systems (MEMS), inertial mea-
surement unit ( IMU), mobile airbags, support vector machine
(SVM).

I. INTRODUCTION

T HE WORLD is faced with an increasingly aging popula-
tion. Along with this increase, the proportion of elderly

people who are frail and dependent is also likely to rise signif-
icantly [1]. Given that falls and fall-induced fractures are very
common among the elderly, this shift in demographic patterns
will lead to an exponential increase in the number of elderly in-
dividuals who suffer injuries from falls.

Hip fractures account for most of the deaths and costs asso-
ciated with fall-induced fractures. Worldwide, there are around
4 000 000 hip fracture cases every year, and the annual mortality
rate is 30.8%. In Hong Kong, there are 4000 hip fracture cases
per year [2]. The annual medical and rehabilitation expenditure
associated with these cases amounts to HK$150 million. Many
hip protectors composed of a pair of hard pads worn with a tight
undergarment are commercially available. Some of these pro-
tectors have been proven to have a force attenuation ability of as
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high as 95% [3]. However, because the elderly find such protec-
tors uncomfortable and inconvenient, they have a poor compli-
ance rate and do not deliver the hip fracture prevention qualities
expected of them. In Hong Kong, hot weather is a significant
factor in the low compliance rate, which averages 40% for the
entire year and ranges from 70% in the autumn to 20% in the
summer [4].

To build a protective system, the concept underlying auto-
mobile airbag systems is applied. This system has two mod-
ules: a sensing module ( IMU) and an inflator connected to two
nylon airbags. When the IMU detects a fall, it triggers an in-
flator, which then deploys the airbags before impact to protect
the wearer. The gas is supplied from a handy compressed gas
cylinder, rather than relying on the combustion of chemicals.

Due to the availability of small, low-cost microelectrome-
chanical systems (MEMS) sensors, it is possible to build self-
contained inertial sensors with an overall system dimension of
less than 1 cubic inch and, at the same time, a sensing unit
that can track disorientation and other motions in real time. The
real-time monitoring of human movement can be employed to
facilitate long-term monitoring [5]. Previous studies have also
demonstrated the use of similar units to recognize daily life ac-
tivities and acquire indirect measures of metabolic energy ex-
penditure [6]. Some papers have presented the implementation
of a real-time classification system for the types of human move-
ment that are associated with motion sensing data [7]. The sam-
pling rate for this system is too low, and it is only suitable for
normal life recording and analysis. Few IMU systems are de-
signed for real-time interaction with humans and mechanistic
systems for other types of action.

Our group has developed a Micro Input Device System
(MIDS) based on MEMS sensors as a novel multifunctional
interface input system that could potentially replace the mouse,
pen, and keyboard as input devices for computers [8], [9]. We
have also developed a IMU that measures three-dimensional
angular rates and accelerations based on MEMS sensors. We
have integrated a microcontroller and a Bluetooth module
into the IMU, and the overall size of the unit is less than
56 mm 23 mm 15 mm. We have developed the module as
a ubiquitous wireless digital writing instrument that interacts
with humans and computers [10]. A human airbag system is
another application of this module. Along with the IMU, the
system includes a support vector machine (SVM) filter, an em-
bedded DSP, and a mechanical system for airbag deployment.

This paper describes the implementation of the mobile human
airbag system. First, the IMU and the mechanical airbag de-
ployment system were finalized. Based on an analysis using
high-speed camera data, a gate filter was generated and fitted
to the IMU, and an independent airbag release experiment

1530-437X/$25.00 © 2009 IEEE
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Fig. 1. Conceptual illustration of the “intelligent” human airbag system.

showed that the IMU combines well with the deployment
system for hip protection. Second, SVM was introduced for the
recognition of falls. We set up a database of 100 lateral falls and
100 other normal motions including walking, running, sitting,
going upstairs and downstairs, taking an elevator and squatting.
Using an SVM training process, an SVM filter capable of
successfully classifying falls and other motions was generated.
Third, a slide window process and a new SVM filter with a
lower sampling rate were used for real-time fall recognition.
After simulating the relevant algorithms, an embedded DSP
system was used to show the classification of falls in real time,
which proved the feasibility of our system.

This paper is organized as follows. In Section II, the airbag
system as a whole is introduced, including IMU hardware, the
design of the deployment system and the independent demon-
stration based on high-speed camera analysis. Section III intro-
duces the SVM process and Section IV presents real-time im-
plementation of the SVM filter. Finally, our conclusions are pre-
sented in Section V.

II. A HUMAN AIRBAG SYSTEM FOR FALL PROTECTION

As noted above, hip fractures account for most of the costs as-
sociated with falls and fall-induced fractures, especially among
elderly people. We propose the development of intelligent and
personalized wearable airbags to reduce the impact force of falls
among the elderly. Fig. 1 illustrates the basic concept underlying
the intelligent human airbag system. Initially, the airbag is com-
pressed inside a belt. When an elderly person loses his or her
balance, the MEMS microsensors in the belt detect his or her
disorientation and trigger the inflation of the airbag on the ap-
propriate side a few milliseconds before the person falls to the
ground. There are two main parts to this project. The first is the
electronic part that uses an algorithm to judge falls and sends a
trigger signal to the airbag inflator. The second is the mechan-
ical part, which includes the inflator structure for compression,
airbag deployment control, and airbag design.

A. IMU Design
MEMS sensors play a major role in the IMU due to

their low cost and miniature size. For our experiments, we

Fig. 2. Photograph of a 3-D motion sensing system consisting of three gyros
and three accelerometer sensors.

use ADXL203 (AD Inc.) sensors as accelerometers [13]
and muRata ENC-03 angular rate gyros, respectively. These
are low-cost and relatively high-performance sensors with
analog signal output. The output signals of the accelerometers

and the angular rate gyros are con-
verted directly by an A/D converter inside the microcontroller.
We use an ATMEL ATmega32 microcontroller in this design.
This microcontroller has a 32 Kbyte flash, 2 Kbyte of SRAM,
8 channels of 10-bit ADC, and a USART (Universal Syn-
chronous and Asynchronous serial Receiver and Transmitter)
port [13]. The sampling rate of the microcontroller is 200 Hz,
which ensures rapid reaction to human motion. We use a TDK
Systems blu2i Module in our system to transfer data to a host
system. This Bluetooth module allows for easy integration with
various host systems. The module is directly connected to the
microcontroller via a USART port. The module is very small
(45 mm 20 mm 10 mm) and can easily communicate with
the microcontroller.

The accelerometers and gyros act as a micro inertial measure-
ment unit of the motion sensing system. These IMU sensors
and the Bluetooth module are housed in a small PCB, as shown
in Fig. 2. According to the calculations, two 3.6 V Li batteries
can power the unit for 8–10 h. The computer receives 3-D ac-
celerations and angular rates, displays them in six time-domain
plots, each of which represents an axis acceleration and rota-
tion rate. At the same time, a text file consisting of six charac-
ters is generated for later analysis. The IMU is thus capable of
performing two functions: first, the capture and wireless trans-
mission of data that can be analyzed later to the computer, and
second, the downloading of an angular rate-based recognition
algorithm used to identify a falling motion and trigger the airbag
for inflation.

B. Airbag Release System
The mechanical release mechanism (Fig. 3) includes a cross-

shaped punch mounted on a launcher that consists of a spring
and a locking switch. The spring is compressed by screwing.
When the locking switch is pressed by an actuator, the com-
pressed spring extends and the punch accelerates toward the
pressurized cylinder. The compressed CO is released from the
gap between the punch and the cylinder cap. Finally, the gas is
transmitted along a 16-cm-long pipe to inflate the airbag.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on August 20, 2009 at 01:56 from IEEE Xplore.  Restrictions apply. 



SHI et al.: MOBILE HUMAN AIRBAG SYSTEM FOR FALL PROTECTION USING MEMS SENSORS AND EMBEDDED SVM CLASSIFIER 497

Fig. 3. The cross-sectional view of the inflator: (a) state before triggering;
(b) after triggering, gas is released.

The actuator used is a 16 g commercially available servo
BMS-380MAX of 26 13 26 mm in size, with a speed of
0.15 s/60 at 4.8 V. It requires only 5 V and less than 0.6 A. The
maximum torque is 4.1 kg/cm at 4.8 V. It can easily be driven
by the microcontroller with pulse-width modulation (PWM),
which controls the position of the servo angle according to the
length of the pulse form. Its response time (from the time the
servo receives a signal until the compressed gas is first released)
consistently lies between 0.1 and 0.133 s.

We have also engineered the airbag inflation process to ensure
that the airbags can be inflated within 0.333 s. This means that
the entire process of fall detection, mechanical triggering and
airbag inflation must be completed within 0.9 s in order for the
system to protect the wearer. Classical compressible-fluid mass
flow rate equations are used to estimate flow parameters through
an orifice

(1)

where is mass flow rate (kg/s), is the area of the airbag
inlet orifice (in m ), and are cylinder pressure and airbag
pressure respectively, which are used to determine final air pres-
sure (as recorded by a pressure sensor), is the specific heat
ratio ( for air, 1.3 for CO ) and is the gas constant
( j/kgK for air, 188.9 j/kgK for CO ). The equations
shown below describe instantaneous pressure in the compressed
gas cylinder under subsonic flow and sonic flow, respectively

(2)

Fig. 4. Comparison of experimental and simulation results for mobile airbag
inflation (pressure versus time).

where and is the ratio of mass
flow rate to choked mass flow rate. For subsonic flow, varies
with the pressure ratio and the differential equation is solved
using Matlab Simulink. Fig. 4 shows a comparison between the
pressures derived through simulation and those calculated from
experimental results (using an outlet orifice of 15.21 mm at an
initial pressure of 550 kPa). It is clear that the above equations
are suitable for modeling gas flow parameters during the airbag
inflation process.

For the implementation of the human airbag system, we found
that a 12g CO cartridge (with a diameter of 8 mm and a total
length of 85 mm) could be used to expand a 1.88 m
airbag (the minimum dimensions of an airbag for effective im-
pact reduction). According to the calculations, the ratio of CO
mass supplied and the gas mass required for the desired
airbag volume is , which means the CO from
a 12 g cartridge can be used to inflate an airbag to the minimum
volume required to protect the wearer within 0.333 s. The com-
pact nature of the CO cartridge and airbag makes the system
suitable for everyday use among the elderly.

C. High-Speed Camera Analyses and Airbag System Demo

To analyze the IMU signal output, a high-speed camera was
used to record the falling motion, while the IMU was in oper-
ation. The camera model used was a PCO 1200 hs High-Speed
Cam with a maximum resolution of 1280 1025 pixels. The
film rate used was 200 Hz. The camera was placed 5 m from
the subject in a position orthogonal to the direction of the fall.
By measuring the inclined angle of the trunk in the frames
within the known time interval, the change in the inclined angle
with respect to time can be obtained. The angle-time relation-
ship can be fitted with a cubic curve. The instantaneous angular
velocity of the hip can be measured by differentiating this cubic
curve. Moreover, when compared to one of the gyro outputs
(the rotational velocity of the trunk) of the IMU, the signal
corresponding to impact can be justified. In Fig. 5, the inclined
angle of the trunk is measured from the film produced by
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Fig. 5. Fall analysis with high-speed camera.

Fig. 6. Comparison of high-speed camera results and the gyro sensor output.

the high-speed camera. is determined from the feature repre-
sented by the horizontal line in the film.

As shown in Fig. 6, when we compared the high-speed
camera results with one of the gyro outputs (the rotational
velocity of the trunk) of the IMU, the signal corresponding to
impact could be justified. The gyro output was very similar to
the image analysis. This also helped us to determine when we
should open the airbag.

Using the results from the high-speed camera and the inflator,
we were able to set up a demo to show the feasibility of the
airbag system. We connected the air cartridge to the inflator
and the inflator to the IMU. The inflator is used to trigger the

IMU. A certain gyro sensor value was set as the threshold for
a dangerous fall. Given that we assumed that after a 30 angle, a
person cannot maintain his or her balance any longer, we traced
the value of angular velocity from the high-speed camera results
and input it into the gyro sensor. When the gyro sensor output
following an action is bigger than this value, the IMU triggers
the airbag.

Fig. 7 shows the results of airbag deployment. When a person
is falling and the angular velocity is larger than a given value, the
sensor module triggers the CO cylinder to release air and inflate
the airbag. It can clearly be seen that the airbag is inflated before

Fig. 7. Independent demonstration with �IMU and deployment system.

Fig. 8. Schematic chart of SVM training.

the person falls to the ground, which provides hip protection.
This experiment proves that the airbag system is feasible.

III. SVM CLASSIFICATION

Although a simple angular rate threshold can be used to in-
dicate that a fall is in progress, false inflations can occur during
normal physical activity. This emphasizes the need to make the
trigger device reliable, such that the sensing unit triggers the
deployment system when a fall occurs, and at the same time,
false signals that induce unnecessary panic are not generated, a
feature especially important to the elderly. The SVM, a kind of
neural network algorithm, was selected because it is a good bi-
nary classifier that requires a relatively low number of samples.
A SVM-based scheme using a host computer was tested to dis-
tinguish between normal and falling motions.

As shown in Fig. 8, the MCU first converts the sensor outputs
into digital signals and then transmits the packed data signal
sequentially via a Bluetooth module to a computer. Hundreds
of recordings, including lateral falls, walking, running, sitting,
walking up and down stairs, and stepping into elevators, were
made to form a database for SVM training. After training, we
selected the best features to form a classifier for falling-motion
recognition.

Our goal is to facilitate the recognition of a falling-down mo-
tion in real time and control a hip-protection airbag. We ad-
dressed this problem through the use of binary pattern recog-
nition with SVM, as follows.

1) Setting up a database of “falling down” and “non-falling-
down” motions through experiments in which the uIMU
was worn.
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Fig. 9. Original data recorded for a falling down motion.

2) Using supervised principal component analysis (PCA) to
generate and select characteristic features.

3) Using SVM training to derive the SVM classifier.

A. Database Setup
Two groups of experiments were carried out. These involved

one hundred lateral falls and one hundred other motions, in-
cluding 10 running motions, 20 walking motions, 20 sitting mo-
tions, 20 squatting motions, 20 motions involving walking up or
down stairs, and 10 jumping motions. These motions were se-
lected as normal motions undertaken in everyday life. Because
the elderly seldom jump or run, we collected more data on sit-
ting and squatting motions, an approach that can also be justified
on the basis that these motions are more similar to the motions
that occur during a fall.

Fig. 9 shows the original data for one falling motion, in-
cluding the 3-D accelerations and rotation rates from one exper-
imental trial. In Fig. 9, (represented by the blue line) is the
angular rate of the pitch direction, the change in which gives a
starting point for judging a falling motion. (the black line)
represents vertical acceleration. The sudden spike in the data
corresponds to the point in time at which the hip hits the ground.
By synchronizing visual observations with the sensed data, we
extracted motion data from the beginning of a fall to when the
body hit the ground (a soft mat) for all six sensors.

One hundred experimental falls were carried out, including
fast and slow falling motions. The experiments involved the
used of two different people as models to allow for the construc-
tion of a more realistic database. The same cuttings were also
done for the 100 normal motions. This resulted in the formation
of a database of 100 falls and 100 normal motions.

B. Supervised PCA and ICA for Feature Extraction
Feature generation and selection are very important in falling

down recognition, as badly selected features such as weight-
lessness, leaning backward and hip spinning may be confused
with jumping, sitting and turning around, which can clearly re-
duce the effectiveness of the system. Furthermore, although the
present features contain enough information about the output
class, they may not predict the output correctly, because the spa-
tial dimensions of a feature may be so large that numerous in-
stances are required to determine the result.

PCA can be used to generate mutually uncorrelated features
while packing most of the relevant information into several
eigenvectors. In our system, we use supervised PCA algorithms
to generate features and select high-quality combinations for
better recognition performance.

A set of eigenvectors can be computed from the training mo-
tion data and some of eigenvectors were selected for classifica-
tion according to the corresponding eigenvalue.

We selected the eigenvectors according to binary classi-
fied capability rather than according to the corresponding
eigenvalues. This is because while the eigenvectors with large
eigenvalues may carry the common features, they do not
carry the information required for distinguishing between two
classes.

The method can be described as follows. Suppose that we
have two sets of training samples: and . The number of
training samples in each set is . represents each eigen-
vector produced through PCA. Each of the training samples, in-
cluding both positive samples and negative samples, can be pro-
jected into an axis extended by the corresponding eigenvector.
By analyzing the distribution of the projected points, we can
roughly select those eigenvectors which have more motion in-
formation. The following is a detailed description of the process.

1) For a certain eigenvector , compute its mapping result
according to the two sets of training samples. The result
can be described as . is
the number of eigenvectors and is the total number of
training samples.

2) Train a classifier using a simple method, such as Percep-
tion or Neural Network, which can be used to separate
into two groups, falling down and non-falling-down, with
a minimum error .

3) If , select this eigenvector from the original set
of eigenvectors. is the defined threshold. The selected
eigenvectors can also be represented back to motion data
representing a typical movement.

Independent component analysis (ICA) is then used to take
a set of observations and find a group of independent compo-
nents that explain the data. PCA considers the second-order mo-
ments only and uncorrelates data, while ICA accounts for higher
order statistics and thus provides a more powerful data expres-
sion than PCA [11].

Here, we randomly select three of the selected eigenvectors
generated through the supervised PCA process to form param-
eter matrix . When is multiplied by and , two input
matrices are generated which contain only three parameters for
each input vector, which we call and . When we follow the
ICA process in [11], good is selected and the corresponding

and are selected as the training inputs for the SVM process.

C. SVM Training Process

Our goal is to separate the original data into two classes, falls
and normal motions, according to a group of features. In our
system, the input data for human motion is high dimensional and
nonlinear. We have to map the data represented by and into
a high-dimensional feature space via a nonlinear mapping ,
and do linear regression in this space [12]. We assume that the
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input vectors are and that is the
class label of

(3)

Thus, linear regression in a high-dimensional (feature) space
corresponds to nonlinear regression in the low-dimensional
input space . Note that is the threshold and the dot product
between and has to be computed in this high-dimen-
sional space (which is usually intractable) if we are not able to
use the kernel that eventually leaves us with dot products that
can be implicitly expressed in the low-dimensional input space

. The kernel function is defined by

(4)

As explained in [12], any symmetric kernel function that
satisfies Mercer’s condition corresponds to a dot product in
some feature space. As a detailed reference on the theory and
computation of SVM, readers can refer to [12]. There are many
kernels that satisfy Mercer’s condition as described in [12]. In
this paper, we take a simple polynomial kernel

(5)

Thus, we should solve

(6)

where is a tradeoff parameter between error and margin and
are Lagrangian multipliers. This is a quadratic programming

(QP) problem with a selected kernel function in which the
can be calculated and the relative input vectors are called the
support vectors. Given that a lot of Lagrangian multipliers will
go to zero, there are only a few (denoted as ) support vectors
left for the calculation of through the following equations:

(7)

(8)

D. SVM Training and Experimental Results
Two hundred experimental results consisting of an even

split of “falling down” data and “non-falling-down” data were
recorded. Each result consisted of six arrays measured by the
six respective sensors.

Data preprocessing was performed to filter noise and reduce
dimension. For each experimental result, we performed a
DFT of the six respective arrays and kept the first ten coef-
ficients of each DFT result. After 200 DFTs, we obtained a

TABLE I
THE COEFFICIENTS OF THE SVM CLASSIFIER

matrix of 200 rows and 60 columns, each row representing
an experiment. Each had numbers in the sequence

.
It was found that compressing the training data into three di-

mensions using PCA and ICA was sufficient to obtain good clas-
sification results. We randomly chose half of the data for SVM
training and the other half was used for testing.

For the unseen testing data, good results were obtained.
Basically, the resulting system could classify the test vectors
into ‘falling-down” and “non-falling-down” states with 100%
accuracy.

The computation required for the SVM classifier is shown in
(7). The corresponding coefficients are shown in Table I. Al-
though the training process is computationally expensive, after
training, the computational requirements of the classifier are
very small

(9)

IV. REAL-TIME IMPLEMENTATION WITH DSP

A. Improvement of SVM Filter: Window Processing
For a real-time system, our goal is to realize an algorithm that

can recognize a fall before it is completed. The system must
recognize a dangerous action within a very short period of time
to ensure that there is enough time for airbag inflation. At the
same time, the system should not be falsely triggered when a
person is going through normal motions.

We suggest a slide window processing algorithm, i.e., one that
defines a certain width of “window” for processing. We cut a
selected “window width” for FFT and SVM filter judging, and,
at the same time, push the window forward, thus allowing the
data in the window to be judged every s.

The experiments carried out showed that the falling motion
and the other motions could be totally separated using all these
window widths. Fig. 10 shows the classification results in a
Matlab figure, in which the blue points represent the fall data
and the red points represent the other motions.

B. Improving the SVM Filter: Lowering the Sample Rate
As defined above, the sampling rate of our IMU is 200 Hz.

For the window process algorithm, a new array of six channels
of data renews the FFT results of the polynomial every
0.005 seconds. Within this very short period of time, the system
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Fig. 10. Falling and other motions can be classified.

Fig. 11. The filter computations can be performed in 1/100 s.

Fig. 12. Real-time recognition structure.

must recognize whether the motion is dangerous, which means
the FFT and the SVM filter computations should be completed
within 0.005 s.

Fig. 11 shows the computational requirements for this fil-
tering process. In our most updated system, 200 Hz ADC data
is transmitted, but the data is sampled and trained every 10 ms.
In addition, with the SVM training process, a filter for fall
detection is generated. The results show that we can classify
falling and other motions clearly. Therefore, this new filter can
be loaded to a DSP and the calculation time can be prolonged
to 10 ms.

C. DSP Implementation

As described above, for a real product, all the algorithms must
be integrated into one chip. For a high-speed DSP, we transfer
the data into the DSP first, let the algorithm read the data using
the fixed slide window, and then judge each window for danger.
Fig. 12 shows the algorithm flow of the system.

The TMS320 6713 DSP chip is used for our system. The
C6713 device is based on the high-performance, advanced very-
long-instruction-word (VLIW) architecture developed by Texas
Instruments (TI), making it an excellent choice for multichannel
and multifunction applications. The key issue in selecting a DSP
is operating speed, which makes the C6713 device a suitable
choice [14].

a) Computation Time Consumption for -Point FFT: FFT
is widely used for frequency domain processing and spectrum
analysis. It is a computationally efficient discrete Fourier trans-
form (DFT), which is defined as

(10)

where the twiddle factor is defined as

(11)

The reduced complexity of the radix-2 FFT algorithms is
complex multiplications and

complex additions [14]. An experiment shows that FFT simula-
tion based on the radix-2 FFT algorithm (367 111 cycles for a
DSP of 300 MHz) will cost around 0.001 s, which is insignifi-
cant compared to the time-cost for mechanical systems.

b) SVM Filter Consumption: As mentioned above, we
need to generate and before using the SVM filter, as
shown in (7). Originally, we had the first ten-order FFTs of the
six ADC channels; therefore, a polynomial is generated.
In the SVM training process, we have one parameter matrix

. This polynomial is multiplied with the parameter
matrix, resulting in a polynomial that is ready
for the final filter

(9)

For the matrix calculation, 180 multiplications and 180 addi-
tions are required. For the filtering algorithm, 15 multiplications
and 9 additions are needed.

An experiment shows the simulation results of the SVM filter,
which includes the FFT result, and the number of cycles is
about 66 910. A DSP of 300 MHz costs 0.00002 seconds. In the
simulation results, the entire consumption of the DSP is 434 021
cycles, whereas in real-time computation, our new filter gives
us 3 M cycles for calculation, which is enough if we take the
simulation result.

c) Demonstration of DSP Real-Time Recognition: Fig. 13
shows a demo of the DSP system in recognizing a fall motion.
An integrated algorithm is embedded in the DSP. The algorithm
performs FFT and SVM, which discriminate normal motions
(walking, going up stairs, sitting, standing) from falls. As the
photos show, the airbag is triggered only when a fall occurs. This
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Fig. 13. Demonstration of fall protection in real-time.

demo proves the feasibility of the real-time DSP application and
the entire airbag system.

V. CONCLUSION

This paper presents a novel MEMS-based human airbag
system that is under development. A IMU is used for the
detection of complex human motions and the recognition of a
falling down motion, which can then be used to trigger the re-
lease of airbags. An air release system is also designed. We set
up an independent demo to demonstrate that the airbag system
is feasible when used in combination with our IMU. We also
use SVM as a pattern recognition method for training after
PCA for DFT data. We show that selected eigenvector sets can
classify 200 experimental data sets to sort the eigenvectors into
“non-falling-down” and “falling down” categories. With the
improvement made to our SVM filter, the algorithms can easily
be embedded into a real-time DSP. The experiments show that
the embedded algorithms can classify falls and non-falls in real
time and that the airbag can be deployed when a fall occurs.
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