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Abstract—This paper presents three different gesture recogni-
tion models which are capable of recognizing seven hand gestures,
i.e., up, down, left, right, tick, circle, and cross, based on the input
signals from MEMS 3-axes accelerometers. The accelerations of
a hand in motion in three perpendicular directions are detected
by three accelerometers respectively and transmitted to a PC via
Bluetooth wireless protocol. An automatic gesture segmentation al-
gorithm is developed to identify individual gestures in a sequence.
To compress data and to minimize the influence of variations re-
sulted from gestures made by different users, a basic feature based
on sign sequence of gesture acceleration is extracted. This method
reduces hundreds of data values of a single gesture to a gesture
code of 8 numbers. Finally, the gesture is recognized by comparing
the gesture code with the stored templates. Results based on 72 ex-
periments, each containing a sequence of hand gestures (totaling
628 gestures), show that the best of the three models discussed
in this paper achieves an overall recognition accuracy of 95.6%,
with the correct recognition accuracy of each gesture ranging from
91% to 100%. We conclude that a recognition algorithm based on
sign sequence and template matching as presented in this paper can
be used for nonspecific-users hand-gesture recognition without the
time consuming user-training process prior to gesture recognition.

Index Terms—Gesture recognition, interactive controller,
MEMS accelerometer.

I. INTRODUCTION

T HE increase in human-machine interactions in our daily
lives has made user interface technology progressively

more important. Physical gestures as intuitive expressions will
greatly ease the interaction process and enable humans to more
naturally command computers or machines. For example, in
telerobotics, slave robots have been demonstrated to follow the
master’s hand motions remotely [1]. Other proposed applica-
tions of recognizing hand gestures include character-recogni-
tion in 3-D space using inertial sensors [2], [3], gesture recog-
nition to control a television set remotely [4], enabling a hand
as a 3-D mouse [5], and using hand gestures as a control mech-
anism in virtual reality [6]. Moreover, gesture recognition has
also been proposed to understand the actions of a musical con-
ductor [7]. In our work, a miniature MEMS accelerometer based
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recognition system which can recognize seven hand gestures in
3-D space is built. The system has potential uses such as a re-
mote controller for visual and audio equipment, or as a control
mechanism to command machines and intelligent systems in of-
fices and factories.

Many kinds of existing devices can capture gestures, such as
a “Wiimote,” joystick, trackball and touch tablet. Some of them
can also be employed to provide input to a gesture recognizer.
But sometimes, the technology employed for capturing gestures
can be relatively expensive, such as a vision system or a data
glove [8]. To strike a balance between accuracy of collected data
and cost of devices, a Micro Inertial Measurement Unit
is utilized in this project to detect the accelerations of hand mo-
tions in three dimensions.

There are mainly two existing types of gesture recognition
methods, i.e., vision-based and accelerometer and/or gyroscope
based. Due to the limitations such as unexpected ambient optical
noise, slower dynamic response, and relatively large data col-
lections/processing of vision-based method [9], our recognition
system is implemented based on an inertial measurementunit
based on MEMS acceleration sensors. Since heavy computa-
tion burden will be brought if gyroscopes are used for inertial
measurement [10], our current system is based on MEMS ac-
celerometers only and gyroscopes are not implemented for mo-
tion sensing.

Existing gesture recognition approaches include tem-
plate-matching [11], dictionary lookup [12], statistical matching
[13], linguistic matching [14], and neural network [15]. For
sequential data such as measurement of time series and acoustic
features at successive time frames used for speech recognition,
HMM (Hidden Markov Model) is one of the most important
models [16].It is effective for recognizingpatterns with spatial
and temporal variation [17]. In this paper, we present three dif-
ferent gesture recognition models, which are: 1) sign sequence
and Hopfield based gesture recognition model; 2) velocity in-
crement based gesture recognition model; and 3) sign sequence
and template matching based gesture recognition model. In
these three models, in order to find a simple and efficient solu-
tion to the hand gesture recognition problem based on MEMS
accelerometers, the acceleration patterns are not mapped into
velocity, displacement or transformed into frequency domain,
but are directly segmented and recognized in time domain.
By extracting a simple feature based on sign sequence of
acceleration, the recognition system achieves high accuracy
and efficiency without the employment of HMM.

II. GESTURE MOTION ANALYSIS

Gesture motions are in the vertical plane (as defined by the
x-z plane in Fig. 1(a)) or the projection of the motions is mainly

1530-437X/$26.00 © 2011 IEEE



XU et al.: MEMS ACCELEROMETER BASED NONSPECIFIC-USER HAND GESTURE RECOGNITION 1167

Fig. 1. Gesture up motion analysis. (a) Coordinate system. (b) Gesture up mo-
tion decomposition. (c) Predicted velocity and acceleration in the z-axis of the
gesture up. (d) Real acceleration plot of the gesture up. Solid and dotted lines
are accelerations on x- and z-axis, respectively.

in the vertical plane, so the accelerations on x- and z- axes are
adequate to distinguish each gesture. Therefore, the acceleration
on y-axis is neglected to reduce computational requirement.

We propose that the exact shape of the acceleration curves
is not critical, but only the alternate sign changes of accelera-
tion on the two axes are required to uniquely differentiate any
one of the 7 gestures: up, down, left, right, tick, circle, and
cross. This is the basis of the recognition algorithms discussed
in this paper. For instance, the gesture up has the acceleration
on z-axis in the order: negative —positive— negative (positive
z direction points downward) and nearly has no acceleration on
x-axis; for a circle gesture, on x axis: positive-negative-positive
and on z-axis: negative-positive-negative-positive. Experiments
showed that each of these gestures hasa special order of sign
changes, and a kinematics analysis also proves this.

A kinematic motion a hand goes through in performing a ges-
ture could nonintuitive at time. For example, a simple up gesture

can be decomposed into several acceleration and deceleration
periods. As shown in Fig. 1(b), an up gesture is actual consist
of motion from point 1 to point 2, and then back to point 1. The
velocity at the starting point 1, midpoint 2 and end point 1 are
all zeros. For the convenience of analysis, point 3 is the point
between point 1 and point 2 where acceleration changes sign,
and point 4 is the point between point 2 and point 1 where ac-
celeration changes sign. Then the acceleration changes can be
described as:

1 3: acceleration on z-axis is negative (since positive
z direction is downward); velocity changes from zero to a
maximum value at 3; acceleration at point 3 is zero.
3 4: acceleration on z-axis is positive; velocity changes
from negative to positive and is maximum at point 4, where
acceleration becomes zero.
4 1: acceleration on z-axis is negative; velocity changes
from positive to zero. Also, acceleration and velocity be-
come zero at point 1.

The analysis above is illustrated by Fig. 1(c). Fig. 1(d) is the
real acceleration plot for the gesture upin which the dotted line
is the acceleration on z-axis and solid line is the acceleration
on x-axis. From Fig. 1(d), we note that noise exists from sensor
measured data. However, the noise does not influence the trend
of the acceleration curves, and hence, the analysis of gestures
based on the above method still works without adding compu-
tational burdens on a CPU by using a noise-filtering algorithm.
Comparing the predicted acceleration pattern in Fig. 1(c) with
the real acceleration plot in Fig. 1(d), it is concluded that the
trend of the real acceleration is the same with the prediction.

After analyzing the other gestures, it was found that they
all have unique acceleration patterns for classification. Gesture
down is similar to up but with changes in directions, left and
rightand also similar, but the changes in motion axes informa-
tion. Tick, circle and cross are more complex since they have
accelerations on both x- and z- axes simultaneously, but the ac-
celerations on the two axes can be separated and decomposed,
then the motion trend becomes similar to the above example.
The uniqueness of each gesture trend makes the recognition al-
gorithm possible, and the algorithms presented in this paper are
based on this basic motion feature of the seven gestures.

III. SENSING SYSTEM OVERVIEW

A. Sensor Description

The sensing system utilized in our experiments for hand mo-
tion data collection is shown in Fig. 2 and is essentially a MEMS
3-axes acceleration sensing chip integrated with data manage-
ment and Bluetooth wireless data chips. The algorithms de-
scribed in this paper were implemented and run on a PC. De-
tails of the hardware architecture of this sensing system were
published by our group in [19] and [20]. The sensing system
has also been commercialized in a more compact form recently
[21].

B. System Work Flow

When the sensing system is switched on, the accelerations in
three perpendicular directions are detected by the MEMS sen-
sors and transmitted to a PC via Bluetooth protocol. The gesture
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Fig. 2. Illustration of the components of the sensing system used for hand ges-
ture recognition (the device shown as dimensions of � � � cm, � � ��� cm,
� � ��� cm).

Fig. 3. Workflow of gesture recognition system using MEMS.

motion data then go through a segmentation program which au-
tomatically identifies the start and end of each gesture so that
only the data between these terminal points will be processed to
extract feature. Subsequently, the processed data are recognized
by a comparison program to determine the presented gestures.
The work flow of this system is shown in Fig. 3.

Fig. 4. Motions of seven gestures.

IV. GESTURE SEGMENTATION

A. Data Acquisition

To collect reliable hand gesture data for the sensing system,
the experimental subject should follow guidelines below during
the data acquisition stage:

• The sensing devices hould be held horizontally during the
whole data collection process (i.e., the x-y plane of the
sensor chip in Fig. 2 pointing towards the ground).

• The time interval between two gestures should be no less
than 0.2 seconds so that the segmentation program can sep-
arate each one of the gestures in sequential order.

• The gestures should be performed as indicated in Fig. 4.

B. Gesture Segmentation

1) Data Preprocessing: Raw data received from the sensors
are preprocessed by two 2 processes: a) vertical axis offsets are
removed in the time-sequenced data by subtracting each data
points from the mean value of a data set; hence, a data set shows
zero value on the vertical axes when no acceleration is applied;
b) a filter is applied to the data sets to eliminate high-frequency
noise data.

2) Segmentation: The purpose of the segmentation algorithm
is to find the terminal points of each gesture in a data set of ges-
ture sequence. The algorithm checks various conditions of all
the data points and picks out the most likely data points as the
gesture termination points. The conditions of determining the
gesture terminal points in our algorithm are a) amplitude of the
points ( -coordinate value of a data point); b) point separation
(the difference between the x-coordinates of the two points);
c) mean value (mean of y-coordinates of points on left and right
sides of a selected point); d) distance from the nearest intersec-
tion (quantifies how far is a selected point away from an “in-
tersection point”, i.e., a point where acceleration curve crosses
from negative to positive or vice versa”); e) sign variation be-
tween two successive points. After examining all the points by
checking these 5 different conditions, the terminal points can be
generated for the motion data on each axis. Since, all these five
conditions are checked separately on x- and z- axes acceleration
data, two matrices are generated for each of gesture se-
quence data
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Fig. 5. Segmentation of a seven-gesture sequence in the order up-down-left-
right-tick-circle-cross.

The element on the first row is the starting point of a gesture
and the element in the second row in same column is the end
points of the same gesture. Comparing the columns of the two
matrices, if the pair of terminal points on one axis is close to
a pair on the other axis, one pair of the terminal points will
be eliminated. A final determination on if a given set of pairs
of points are indeed terminal points is made by comparing the
maximum acceleration between them with the mean value of
the maximum accelerations between all pairs of points. If the
former is too small, then that pair of points will be eliminated.
As an example, the final terminal points for both x- and z- axes
are denoted by circles in Fig. 5.

After obtaining the terminal points of each gesture, the
number of gestures becomes obvious since every gesture has
one starting point and one end point, i.e., the number of the
columns of the final terminal points matrix is the number of
gestures.

V. MODEL ONE: GESTURE RECOGNITION BASED ON SIGN

SEQUENCE AND HOPFIELD NETWORK

A. Gesture Recognition

1) Feature Extraction: By comparing the maximum value
and mean value of the acceleration of the same gesture on the x-
and z- axes and setting corresponding flags, the gestures which
only have motions on one axis (up, down, left, right) are sepa-
rated from the gestures which involve 2-D motions (circle, tick,
cross) to ease computational requirement.

To reduce influence of unstableness of a hand making the
gestures, the algorithm uses the mean value of a certain number
of acceleration points which is set dynamically according to the
duration of the gesture to determine the sign sequence.

The feature extraction procedures are as follows: examine the
sign of the first mean point of a gesture, store in gesture code,
then detect the number of sign changes and store the alternate
signs in sequence in the gesture code. Hence, for the gesture in
Fig. 6, we get the code: 1, 1, 1, 1. The feature extraction
process greatly reduces the data volume and Fig. 6 shows an ex-
ample of sign sequence generation. The whole feature extraction
process can also be illustrated by the transformation in Fig. 7.

Fig. 6. Sign sequence generation.

Fig. 7. Feature extraction transformation.

2) Gesture Encoding: Before recognition, the obtained ges-
ture code should be encoded first so that it can be restored later
by Hopfield network. From our experiments, it was found that
the maximum number of signs for one gesture on one axis is
four, so if the x and z axes sign sequences are combined, there
will be totally eight numbers in one gesture code. But, since
the input for Hopfield network can only be “1” or “ 1”, we
encoded the positive sign, negative sign and zero using the fol-
lowing rules:

• “1 1” represents positive sign;
• “ 1 1” represents negative sign;
• “1 1” represents zero.
Hence, each gesture has a unique 16-number code. For in-

stance, the first sign of the gesture in Fig. 6 is positive, so “1 1”
is stored in the gesture code. The gesture data has three subse-
quent sign changes: from positive to negative, then from nega-
tive to positive, and finally from positive to negative; so s “ 1

1”, “1 1”, and “ 1 1” are stored to the gesture code; other
numbers in gesture code should all be set to zeros, which can be
represented by “1 1”.

3) Hopfield Network as Associative Memory: The involve-
ment of Hopfield network as a recovery mechanism makes the
recognition algorithm more fault tolerant. When part of the input
is lost or wrong, the network can still retrieve the most likely pat-
tern which has been stored previously. Hence, if there is a not
serious deviation, the network will help to restore the gesture
code to the correct pattern. To use Hopfield network as asso-
ciative memory, a weight matrix should be constructed first; the
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TABLE I
STANDARD PATTERNS FOR THE SEVEN GESTURES

construction of the weight matrix is also the information storage
process. The weight matrix is [18]

(1)

where is the pattern to be stored, is the number of patterns
to be stored and is the identity matrix. The standard patterns
for the seven gestures are listed in Table I.

Constructing weight matrix in this way guarantees the weight
matrix is symmetric with zero diagonal elements, and according
to the property of Hopfield network, the network will be stable
and can always retrieve the closest standard pattern after a cer-
tain number of iterations. If the input to the network is , then
the retrieval is

(2)

(3)

(4)

where is the output.
4) Gesture Comparison: After gesture code restoration, each

gesture code is compared with the standard gesture codes. The
comparison is made by calculating the difference between the
two codes, i.e., the smallest difference indicates the most likely
gesture and the recognition result is obtained.

VI. MODEL TWO: GESTURE RECOGNITION BASED ON

VELOCITY INCREMENT

The essence of this approach is to utilize a different feature
which is the velocity increment or the area bounded by the accel-
eration curve and x-axis, to implement classification. The accel-
eration of a gesture on one axis is partitioned firstly according to
the signs. As Fig. 8 shows, the acceleration pattern can be rep-
resented by areas in alternate signs. The physical meaning of
these areas is the increase or decrease in velocity. Since the sign
sequence may over reduce the information while the velocity
increment or area sequence contains more information for dis-
crimination, this approach is supposed to be a better method to
deal with complex gestures.

Due to the intensity variance of each gesture, an area se-
quence should be normalized before stored as training data or

Fig. 8. Area sequence generation. (a) Acceleration partition and (b) area se-
quence generated from (a).

compared with templates. Normalization is implemented using
(5)

(5)

where is the normalized area, is the original
area, and is the maximum area in a sequence. Since
the comparison algorithm compares each pair of numbers
separately, it is possible that misalignment happens due to
noise. Hence, after normalization, the area sequences are not
compared immediately but are processed by using an algo-
rithm analogous to “center of mass,” which is implemented by
imagining the curve has mass and obtaining its coordinates of
center of mass through calculation. Then, the two curves are
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Fig. 9. Work flow chart of Model III.

aligned so that their centers of masses coincide. This algorithm
is expected to reduce the possibility of misalignment. The
final step is to compare the velocity increment sequence by
subtracting two area sequence vectors

(6)

(7)

(8)

where and are the two area sequences to be compared
and is the comparison result. The gesture, which has the
minimum value by comparing one area sequence with the
training samples, can be recognized. The workflow of this
model is shown in Fig. 9.

VII. MODEL THREE: GESTURE RECOGNITION BASED ON SIGN

SEQUENCE AND TEMPLATE MATCHING

The recognition algorithm of this model is very similar to
that of model one, except that no Hopfield network is used, and
hence encoding sign sequence into different combinations of

1’s and 1’s is not necessary. All the sign sequences are rep-
resented by 1, 1 and 0 as shown in Table II. The workflow of
Model III is shown in Fig. 3. Since the algorithm is based on the
feature of acceleration sign changes which is generalized from
gesture motion analysis, it is not limited to specific users. There-
fore, there is no requirement to train the system by specific users
before using it.

TABLE II
GESTURE CODES OF MODEL THREE

TABLE III
COMPARISON OF GESTURE RECOGNITION ACCURACY (%) OF THREE MODELS

VIII. EXPERIMENTAL RESULTS

The experimental results of the three recognition models dis-
cussed above are listed in Table III. As shown in the table, Model
III (based on sign sequence and template matching) achieves
the highest accuracy among the three models, while the perfor-
mance of Model II is the worst of the three. Besides, Model II
is not as robust as the other two methods, i.e., variations of the
input gestures are more likely to affect the outcome of the ges-
tures recognized, so this model should not be preferred when
MEMS accelerometers are used for gesture recognition. Since
Model I and Model III have similar gesture encoding the recog-
nition mechanism, only the evaluation result of Model III is pro-
vided in more detail in this paper.

The test results shown in Table III are based on 72 test
samples, totaling 628 single gestures, i.e., each test sample
consists of a sequence of input gestures in a particular order.
They are collected in two kinds of gesture sequences: 1) in
the order of up—down—left—right—tick—circle—cross,
and 2) 10 same single gestures in onesequence, e.g.,
circle—circle—circle—circle—circle—circle—circle—circle—
circle—circle. To increase data diversity and simulate variations
in gestures made by different persons, gestures were made in
different speeds and intensities; the trajectories of some gesture
motions were made with some variation, e.g., an ellipse was
made instead of a circle. Model III has an overall mean accuracy
of 95.6%, with the recognition accuracy of each gesture above
90%. Table IV shows the detailed recognition results by using
Model III, which shows the total number of input for each ges-
tures and how many of the input are correctly recognized. We
note here that, during experiments, some input gestures were
not detected at all (i.e., due to loss of wireless transmission).
For example, if the order of input gestures in one experimental
sample is up-down-left-right-tick-circle-cross, the detected
gestures may only be down-left-right-tick-circle-cross, i.e.,
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TABLE IV
GESTURE RECOGNITION RESULTS FOR MODEL III

TABLE V
COMPARISON OF GESTURE RECOGNITION ACCURACY (%) OF SEVERAL

DIFFERENT ALGORITHMS

only the last six gestures were detected. Moreover, sometimes
a “ghost” gesture may be detected, i.e., due to environmental
vibrations or unintended hand motions, the algorithm may
“recognize” a gesture even though there was no intended
gesture input. These “missing” or “ghost” gestures were not
taken into account when “recognition accuracy” is determined,
because they did not go through recognition process at all. We
note here that the recognition performance using Model III
is higher than the performance obtained by our group’s prior
work using HMM in [9]. A comparison of the results discuss in
this paper and in [9] is provided in Table V. The experimental
result proves that an algorithm based on sign sequence and
template matching is efficient in recognizing gesture data
from MEMS accelerometers without using a time consuming
training process.

IX. CONCLUSION

This paper describes a nonspecific person gesture recognition
system by using MEMS accelerometers. The recognition system
consists of sensor data collection, segmentation and recognition.
After receiving acceleration data from the sensing device, a seg-
mentation algorithm is applied to determine the starting and end
points of every input gesture automatically. The sign sequence
of a gesture is extracted as the classifying feature, i.e., a gesture
code. Finally, the gesture code is compared with the stored stan-
dard patterns to determine the most likely gesture.

Since the standard gesture patterns are generated by motion
analysis and are simple features represented by 8 numbers for
each gesture, the recognition system does not require a big data
base and needs not to collect as many gestures made by different
people as possible to improve the recognition accuracy. We note
here, however, to enhance the performance of the recognition
system, we will need to improve the segmentation algorithm to
increase its accuracy in finding the terminal points of gestures.
Moreover, other features of the motion data may be utilized for
pattern classification, i.e., more recognition methods will be in-
vestigated in our future work.
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